The Boyd Orr Centre for Population and Ecosystem Health

From Epidemic to Elimination: Density-Vague Transmission and the Design of Mass Dog Vaccination Programs

Dan Haydon University of Glasgow

Daniel.Haydon@glasgow.ac.uk

Sunny Townsend

Katie Hampson

Sarah Cleaveland

Tiziana Lembo

Background

More that 55,000 people die of rabies each year

In more than 98% of cases the cause is a dog bite

In the developing world dogs are the primary reservoir

We have a cheap and effective vaccine

Bat-rabies is genetically distinct, and transmits poorly in other host species

Rabies in paradise

- >100 human deaths since 2008
- Cases in all 9 regencies within ~2 years
- Early control attempts mostly through culling and low coverage vaccination
- Island-wide mass vaccination program started in September 2010

The number of secondary infections arising from the introduction of a single primary case in an otherwise entirely susceptible population

R₀ for rabies in domestic dogs

Table 2. Estimates of R₀ for Outbreaks of Rabies in Domestic Dog Populations around the World

Site	Ro	95% Confidence Interval	Months (weeks)	Year	Setting
Tokyo, Japan [43]	1.05	1.04–1.06	29	1948	—
Kanagawa, Japan [44]	1.09	1.02-1.17	8	1917	_
Perak, Malaysia [45]	1.12	0.99–1.27	6	1951	Rural
Israel [46]	1.12	1.07-1.19	9	1948	_
Ngorongoro District, Tanzania (Figure 3B)	1.14 (1.10)	0.94-1.32 (0.98-1.23)	13 (52)	2003	Rural
Serengeti District, Tanzania (Figure 3B)	1.19 (1.18)	1.12-1.41 (1.08-1.29)	11 (44)	2003	Rural
Lima-Callau, Peru [47]	1.19	1.03-1.38	8	1984	Urban
Tokyo, Japan [44]	1.25	1.14–1.37	4	1918	Urban
Hong Kong [48]	1.27	1.02-1.60	8	1949	Urban
Central New York, USA [49]	1.32	1.25-1.40	11	1944	Rural
Central Java, Indonesia [50]	1.49 (1.63)	1.23-1.80 (1.32-2.02)	4 (15)	1985	Rural
Selangor, Malaysia [45]	1.62	1.48-1.82	11	1951	Urban
Hermosillo, Mexico [28]	1.68	1.52-1.91	11	1987	Urban
Memphis, USA (<10% coverage) [51]	1.69 (1.80)	1.33-2.17 (1.44-2.23)	3 (11)	1947	Urban and Rural
Sultan Hamad, Kenya (~24% coverage) [52]	1.72 (1.85)	1.34–2.18 (1.03–2.92)	4 (14)	1992	Rural

Hampson et al. Transmission Dynamics and Prospects for the Elimination of Canine Rabies. (2009). *PLoS Biology* Vol. 7, No. 3, e53.

The relationship between density and R₀

Dog density

Density independent

 R_0

Dog density

The relationship between density and R₀

Dog density

What did we want to know?

Does it matter exactly how we roll-out island-wide vaccination?

How much does it matter that dogs move?

How do elimination prospects depend on % coverage?

How do elimination prospects depend on R_0 ?

How sensitive are elimination prospects to 'holes in the coverage'?

What is the role of dog 'demographic turnover'?

And the role of the duration of immunity?

Transmission model based on rabies epidemiology

4. Massive viral replication in brain

3. Spread to central nervous system

2. Uptake into peripheral nerves

How dog movement is modelled:

Spatial representation

~ 6,000 1x1 km squares

How dog movement is modelled:

95% of transmission is local

5% of incubating dogs transported long distance

How dog movement is modelled:

Modelled vaccination coverage and rabies cases

seed=1, msv=13

seed=1, msv=15

Does it matter exactly how we roll-out island-wide vaccination?

- A Synchronous: vaccination of the island in one month
- B Random: ordering of blocks, completed in 6 months
- C Rotate: start in the centre and rotate anticlockwise
- D Source: start close to the index case and spread north
- E Furthest: start in the north and spread south
- F Reactive: prioritize blocks with the highest number of cases the month before
- G React w/o repeat: as for F but don't choose the same block twice in a campaign
- H Actual (Nov 2008 Dec 2011)

Assuming 70% coverage for each annual campaign and no gaps ...

How do elimination prospects depend on % coverage?

How do elimination prospects depend on R₀?

How sensitive are elimination prospects to 'holes' in the coverage?

... so unvaccinated villages could jeopardize elimination

What is the role of dog 'demographic turnover?

And the role of the duration of immunity?

Conclusion

Consistently high coverage is more important than anything else

Consistently high regional compliance is critical

Culling is likely to be counter-productive

Political commitment is essential, especially in the end-game